
Automatic annotation of
Latin vowel length

Johan Winge

Uppsala University
Department of Linguistics and Philology
Språkteknologiprogrammet
(Language Technology Programme)
Bachelor’s Thesis in Language Technology

June 4, 2015

Supervisor:
Joakim Nivre

Abstract

This thesis describes a system for annotating Latin texts with vowel lengths
using a PoS tagger, a lemmatizer, and the Latin morphological analyzer
Morpheus. Three taggers, HunPos, RFTagger, and MATE tools, were opti-
mized and evaluated for this task, and trained on two different corpora,
the Latin Dependency Treebank (LDT) and PROIEL. The best tagging
results were achieved by RFTagger with 86.73% accuracy on the full mor-
phological PoS tags in LDT, and by MATE tools with 90.42% accuracy
when predicting the corresponding combined plain PoS and morphologi-
cal descriptors of PROIEL. With RFTagger trained on either of the two
corpora, the complete system was tested on four different texts and was
found to agree with the human annotator on about 98% of the vowel
lengths.

Summārium

Litterās singulās dı̄ligenter perscrūtārı̄ omnēsque vōcālēs longās lı̄neolı̄s
ōrnāre molestissimum labōrem esse, ac paene ad ı̄nsāniam adigentem,
nēmō est quı̄n sciat, sı̄ id vel semel temptāverit. Quid ergō melius quam
istud onus computātrı̄s trādere, utpote quae māchinae paene ı̄nfı̄nı̄tā pati-
entiā industriāque praeditae sint? Ut cognōscātur quae vōcālēs longae sint
in verbō quaeque brevēs, opus est dēcernere prı̄mum quō modō, deinde ex
quō vocābulō sı̄ve “lēmmate” dēclı̄nātum sit; quibus enim rēbus cognitı̄s
expedı̄tē in indice verbōrum apta fōrma inveniātur lı̄neolı̄s ı̄nstrūcta. Hāc
in commentātiōne systēma dēscrı̄bitur, quod ex contextū verbōrum jam an-
notātōrum computātiōne (nec tamen vērā ratiōne animı̄, quae nūlla adhūc
est māchinı̄s) discit distinguere inter flexiōnēs similēs, atque ad vērum
lēmma verbum redūcere, et sı̄c longitūdinēs vōcālium dı̄vı̄nāre. Perı̄culō
factō comprobātum est hoc systēma ab jūdiciō hominis dē longitūdine
fermē quı̄nquāgēsimae quaeque vōcālis dissentı̄re.

Contents

Acknowledgements 4

1 Introduction 5

2 Background 6
2.1 Latin vowel lengths . 6
2.2 Latin resources . 6

2.2.1 The Morpheus morphological analyser 6
2.2.2 Annotated corpora . 7

2.3 Tagging techniques and programs 10
2.3.1 HMM tagging with HunPos 10
2.3.2 RFTagger . 12
2.3.3 MATE tools . 12

2.4 Previous work . 13
2.4.1 The Māccer macronizer 13
2.4.2 Latin PoS tagging . 14

3 Methodology 16
3.1 System overview . 16
3.2 Tokenization . 18
3.3 PoS tagging . 18
3.4 Lemmatization . 20
3.5 System evaluation . 21

4 Results 22
4.1 Tagger optimization . 22

4.1.1 HunPos . 22
4.1.2 RFTagger . 24

4.2 Tagger comparison . 25
4.3 Lemmatization . 26

4.3.1 Optimization of PurePos 26
4.3.2 Lemmatizer comparison 26

4.4 System evaluation . 27

5 Discussion and conclusion 29

Bibliography 31

A Tag sets 33

3

Acknowledgements

First and foremost I would like to thank my supervisor, Joakim Nivre, who
on several occasions pushed me in the right direction and provided much
appreciated criticism. I am also indebted to Marco Passarotti, György Orosz, and
Bernd Bohnet, who generously gave assistance whenever I reached out to them.
Thanks also to Daniel, for his inspiring enthusiasm and Latin proofreading, and
to Gunilla, for her constant patience, support, and encouragement. Finally, I
want to extend my gratitude to Gregory Crane for creating the morphological
analyzer Morpheus, without which this thesis would not have been possible.

4

1 Introduction

Classical Latin (a label conventionally given to the language from roughly 80
BC to 180 AD) had a duplicate vowel system, whereby each of the six short
vowel phonemes /a, e, i, o, u, y/ also had a corresponding long variant. In the
Latin alphabet, however, the vowel letters had to represent both the short and
the long sounds. While the Romans during some periods would occasionally
make the lengths explicit in writing, either by doubling the letters or by marking
long vowels with a diacritic called the apex (similar to an acute accent), in the
usual standardized orthography which is now used in regular editions of Latin
texts, no such distinctions are made.

The main exceptions are dictionaries and textbooks, where long vowels are
usually marked with the macron diacritic, a small straight horizontal bar: ā, ē, ı̄
etc.; short vowels are then either left unmarked or, in order to make the short
length explicit, marked with a small semicircle, the breve: ă, ĕ, ı̆ etc. Apart from
the general interest of historical authenticity, knowing the vowel quantities
gives the ability to correctly place the stress on the correct syllables, and to
better appreciate classical poetry.

Not having vowel lengths marked results in a large number of false
homonyms, i.e. word forms which are homographs but not actually homo-
phones when pronounced using a restored classical pronunciation. This can
occur when two different inflections of the same lemma are spelled the same,
such as mensa (‘table’) which can be either in the nominative (mēnsă) or in the
ablative case (mēnsā), or when the spellings of two different lemmas happen to
coincide, such as lĕvis ‘light’ (adj.) and lēvis ‘smooth’, or when both the lemmas
and the inflections are different, e. g. rĕgı̄ ‘to be ruled’ and rēgı̄ ‘king’ (dat.). To
correctly mark all the vowel lengths in a text is thus a disambiguation task with
respect to both lemmatization and morphological classification.

Since marking vowel lengths by hand is a repetitive and error prone process,
it would be beneficial, both as a paedagogical tool in itself and when editing
textbooks, to be able to perform an automatic annotation of the vowel lengths
in a text. The purpose of this thesis is to explore how the available resources in
the form of common NLP tools and annotated Latin corpora can be adapted
and combined to form an automatic vowel length annotation system, and in
particular to investigate how automatic part-of-speech (PoS) tagging can be
used to improve the result.

With regard to terminology, it should be noted that the term “PoS tagging”
throughout this work is generally used in a less restricted sense, encompassing
tagging with the plain part of speech (noun, verb etc.) as well as with more
detailed morphological attributes (case, number, tense etc.). A text with marked
vowel lengths is referred to as being “macronized”.

5

2 Background

2.1 Latin vowel lengths
The classical Latin language had few phonotactic restrictions on the distribution
of short and long vowels. In initial, medial, and final syllables alike, accented
or not, both long and short vowels may be found. As vowel lengths are not
indicated in the normal Latin orthography, our knowledge of which vowels are
long and which are short depend on other sources, first and foremost classical
Latin poetry, which was bound by quantitative meters, i.e., a regular alternation
of heavy and light syllables.

Light syllables are those which end in a short vowel, (C)V; all other syllable
structures count as heavy: (C)VV, (C)VVC, or (C)VC. Thus, if a metrically
heavy syllable does not end with a consonant, we can deduce that the vowel
is long; otherwise, the quantity is “hidden”, meaning that the vowel can be
either long or short. In that case, evidence has to be gathered from etymology,
development in the Romance languages, borrowings into other languages, and
so on (Allen 1989). When the length is uncertain, it is not uncommon to see
the vowel marked differently in different textbooks and lexica.

2.2 Latin resources

2.2.1 The Morpheus morphological analyser

The Morpheus morphological analyser was developed as part of the Perseus
Digital Library Project,1 a large collection of resources pertaining to the history,
literature and culture of the Greco-Roman world (Crane 1991). Its database is
derived from the Latin–English dictionary by Lewis and Short (1879).

Given a list of word forms as input, it will, for each individual word, give all
possible morphological analyses that it manages to find, based on its lexicon and
built-in inflectional grammar. Each analysis consists of a series of keywords that
describe the word inflection, together with the corresponding lemma and the
word form with vowel quantities marked up. (Macrons are then represented
with underscores, while breves are written as freestanding circumflexes.) For
example, given the word form regi, Morpheus will give three possible analyses:

<NL>N re_gi_,regius masc/neut gen sg ius_ia_ium</NL>
<NL>V re^gi_,rego pres inf pass conj3</NL>
<NL>N re_gi_,rex masc dat sgx_gis</NL>

1http://nlp.perseus.tufts.edu/

6

http://nlp.perseus.tufts.edu/

The human readable keywords can of course quite easily be analysed and
converted to a compact morphological tag, such as those used in the Latin
Dependency Treebank (see below), or to any similar format.

The Morpheus program can thus serve two purposes: either as a mapper
from word forms to possible morphological tags (which can be used to create a
lexicon for use during tagging to restrict the set of possible tags for each token),
or as a mapper from word form and tag pairs to macronized word forms, to be
used during post-processing of the automatically tagged text.

2.2.2 Annotated corpora

Extensive Latin corpora with manually annotated morphosyntactic informa-
tion exist primarily in the form of dependency treebanks, of which three are
freely available, all under a Creative Commons Attribution-NonCommercial-
ShareAlike license (McGillivray 2013, p. 8):

• The Latin Dependency Treebank (LDT) (Bamman and Crane 2011).

• The Latin part of the Pragmatic Resources in Old Indo-European Lan-
guages (PROIEL) treebank (Haug and Jøhndal 2008).

• The Index Thomisticus Treebank (IT-TB) (Passarotti 2010).

A fourth corpus, the LASLA (Laboratoire d’Analyse Statistique des Langues
Anciennes) database, is bigger than any of these by a large margin, consisting
of around 2 000 000 annotated Latin tokens, encompassing text from a large
number of classical authors, and some neo-Latin texts as well. Unlike the other
three it is not a treebank, and, while the database can be queried online, it is
not available for public use in its entirety (Piotrowski 2012, p. 114).

The Latin Dependency Treebank

Just as Morpheus, the Latin Dependency Treebank (LDT) was developed as
part of the Perseus Project. It is a collection of a number of different Latin texts
by some of the most well known classical authors:2

Author Work Sentences Tokens

Caesar De Bello Gallico (selections) 71 1 488
Cicero In Catilinam 1.1–2.11 327 6 229
Sallust Catilina 701 12 311
Petronius Cena Trimalchionis 1 114 12 474
Jerome Vulgate: Apocalypse 405 8 382
Propertius Elegies: Book 1 361 4 857
Ovid Metamorphoses: Book 1 316 4 789
Vergil Aeneid (Book 6 selections) 178 2 613

Total: 3 473 53 143

2Only Jerome is a post-classical author, writing in the late fourth century.

7

Table 2.1: Format of the PoS tag in the Latin Dependency Treebank.

Pos. Feature Values

1 PoS All possible values are listed in tables A.1 and A.2.
2 Person 1st (1), 2nd (2), 3rd (3)
3 Number singular (s), plural (p)
4 Tense present (p), imperfect (i), future (f), perfect (r),

pluperfect (l), future perfect (t)
5 Mood indicative (i), subjunctive (s), imperative (m), infinitive

(n), participle (p), gerund (d), gerundive (g), supine (u)
6 Voice active (a), passive (p)
7 Gender masculine (m), feminine (f), neuter (n)
8 Case nominative (n), vocative (v), accusative (a),

genitive (g), dative (d), ablative (b), locative (l)
9 Degree comparative (c), superlative (s)

The texts are syntactically annotated using a dependency grammar closely
modelled on that of the Prague Dependency Treebank, which means that each
token is annotated with a link to its head, the token it syntactically depends on,
together with a label describing the type of syntactic relation. Each token is
also annotated with a morphological PoS tag describing the inflection, as well
as the lemma of which the token is an inflected form (Bamman et al. 2007).

The framework developed for annotating and exploring Latin texts in the
Perseus project builds upon the dictionary by Lewis and Short (1879). Thus,
as in Morpheus, the lemmas, and in particular the numbering scheme used to
disambiguate homographic lemmas, correspond to the naming of the dictionary
entries. However, it seems that manual editing of the lemma tags during the
development of the treebank has introduced some inconsistencies in the way
the lemmas are named, such as different spellings of assimilated prefixes (an
unstable feature of Latin orthography in general).

In LDT, enclitic particles have been separated, and placed before the words
they were attached to (both in the sequence of tags in the XML source files
and in the numbering of the id-attribute). This process is not always possible to
reliably reverse, because the interrogative particle -nĕ ends up identical to the
negative subjunction nē: frequently they are erroneously marked as belonging
to the same lemma.

The PoS tags, encoding information about the inflection of the word form
as well as the part of speech proper, are all nine characters long, and each
position gives information about a separate inflectional feature, as presented
in table 2.1. Overall, 436 unique tags are included in the corpus. However,
at closer inspection it becomes apparent that the way the different positional
features are utilized is somewhat unsystematic. 24 tags which unexpectedly
lack values for one or more features occur only once; due to space constraints,
these have not been included in tables A.1 and A.2, which describe the existing
PoS tags of the treebank. Some similarly deficient tags occur more than once,
however; for example, the seven verbs with the tags v-sp-an*- are really
gerunds and should thus have the value d in the fifth position.

8

PROIEL

An important result of the Pragmatic Resources in Old Indo-European Lan-
guages (PROIEL) project at the University of Oslo is a parallel treebank of
translations of the New Testament into classical Indo-European languages (Haug
and Jøhndal 2008). Apart from the translation by Jerome (the Vulgate), the
Latin part of the treebank also contains a couple of other texts, by Caesar and
Cicero.3

Author Work Sentences Words

Jerome Vulgate 9 034 80 532
Caesar De Bello Gallico 1 154 22 408
Cicero Litterae ad Atticum 3 596 40 161
Cicero De Officiis 236 4 230

Total: 14 020 147 331

Additionally, there is a fifth text: Peregrinatio Aetheriae, consisting of 921 sen-
tences and 17 554 words. However, following the example of Skjærholt (2011b),
I have excluded it from the following analysis and any future experiment, con-
sidering that this 5th century work is written in a Vulgar Latin which exhibits
many idiosyncrasies compared to the other works.

Punctuation in PROIEL is handled differently from LDT: instead of being
represented as regular tokens and being included in the dependency trees, they
are encoded as additional attributes to the regular word tokens. Enclitic particles
are separated similarly to the practice in LDT, except that the order of the
enclitic and its head word is preserved.

Each token in the PROIEL corpus is annotated with the lemma, a PoS
tag denoting the plain part of speech of the lemma, and a morpho-syntactic
descriptor (MSD), which encodes information about the morphology of the
word form. The PoS tags are two characters wide: the first gives the plain part
of speech, with similar values as the PoS attribute in LDT; the second character
gives a more fine-grained subdivision of some of the parts of speech, primarily
different pronouns.

The MSD consists of ten fields, as described in table 2.2. As can be seen
there, the morphological tags encode basically the same information as the
PoS tags in LDT, except that the gender attribute is more detailed: if a form is
ambiguous with regard to gender, the gender attribute gets a value that covers
all alternatives (even if an ambiguous adjective depends on a noun with a certain
gender).

Tables A.3 and A.4 give an overview of all PoS and MSD combinations that
are used in the corpus. In total there are 959 unique PoS-MSD combinations.

Different but homographic lemmas seem to be disambiguated using the
lemma attribute in combination with the part-of-speech tag: i.e., only when the
part-of-speech tags differ are two lemmas distinguished (with a numerical index
in the lemma tag). Because of this differing practice, there exists no readily
apparent way to map the PROIEL lemmas to those used by LDT or Morpheus.

3I have been working with source files available from the development platform of
PROIEL, http://foni.uio.no:3000/pages/public_data (accessed 2015-03-17). That ver-
sion is slightly extended compared to the one available from http://proiel.github.io/.

9

http://foni.uio.no:3000/pages/public_data
http://proiel.github.io/

Table 2.2: Format of the morpho-syntactic descriptor in the PROIEL treebank.

Pos. Feature Values

1 Person 1st (1), 2nd (2), 3rd (3)
2 Number singular (s), plural (p)
3 Tense present (p), imperfect (i), future (f), perfect (r),

pluperfect (l), future perfect (t)
4 Mood indicative (i), subjunctive (s), imperative (m), infinitive

(n), participle (p), gerund (d), gerundive (g), supine (u)
5 Voice active (a), passive (p)
6 Gender masculine (m), feminine (f), neuter (n),

m/n (o), m/f (p), m/f/n (q), f/n (r)
7 Case nominative (n), vocative (v), accusative (a),

genitive (g), dative (d), ablative (b)
8 Degree positive (p), comparative (c), superlative (s)
9 (Unused) —
10 Inflection inflecting (i), non-inflecting (n)

The Index Thomisticus Treebank (IT-TB)

IT-TB (Passarotti 2010) is a treebank consisting of 265 000 annotated tokens
from the works of the 13th century author Thomas Aquinas, syntactically
parsed according to the same principles as LDT. The morphological tags are
however in a very different format, compared to LDT or PROIEL. With its
considerable size it is obviously a valuable resource for the Latin language;
however, because it is restricted to a single author, and only covers mediaeval
Latin, it has not been used in this study.

2.3 Tagging techniques and programs

2.3.1 HMM tagging with HunPos

The part-of-speech tagger HunPos was developed by Halácsy et al. (2007) as
an open source replacement of the well known tagger TnT (Trigram ’n’ Tags)
(Brants 2000), which is only available in binary form and under a restrictive
license. Seeking to improve the tagging of Hungarian, which (like Latin) is a
highly inflecting language, they felt the need to extend TnT’s functionality to
optionally also make use of a morphological dictionary.

Like TnT, HunPos is a supervised stochastic tagger, which implements a
hidden Markov model (HMM) to assign a sequence of tags to a sequence
of tokens. In other words, a sequence of tags is assigned to a new text using
statistics collected during the training phase, where the tagger learns from a
manually annotated corpus. Given a sequence of tokens, w1,w2, . . . ,wT , the
most likely sequence of tags t1, t2, . . . , tT is generated. To make the calculation
of the probability of a tag sequence possible, a HMM tagger operates under the
assumption that the probability for any given tag depends on the surrounding
tags and corresponding tokens within a small window, and furthermore that the

10

probabilities are all independent. For each tag, the likelihood that it is correct is
estimated as the product of two probabilities:

First, the probability that we would see the word given the tag, P(wi |ti).
This emission probability (also called lexical or output probability) is estimated
based on the relative frequency, which is calculated during training: out of all
instances of the tag t in the training data, how many times is it paired with
the word w? In HunPos (unlike TnT) this behaviour can be tuned to also take
the preceding token(s) into consideration; by default, HunPos operates with
the probability P(wi |ti−1, ti), but even larger context windows can be used, if so
desired, by setting the parameter e (a value of 1 means bigrams, 2 trigrams, and
so on; in other words, the current token is not counted).

Second, the probability of the tag given preceding tag(s), the so-called tran-
sition (or context) probability. By default, HunPos looks at the two preceding
tags, P(ti |ti−2, ti−1); in other words, the tags are handled in groups of three,
trigrams. This too is configurable, using the parameter t , and depending on the
availability and nature of the training data it may prove better to work with
bigrams instead (t = 1) – or longer n-grams. Similar to the emission probabilities,
the transition probabilities are estimated using the relative frequencies seen in
the training set.

Since the training data is likely to be relatively sparse, in that not all possible
trigrams are sufficiently represented, if at all, the probabilities are estimated as
a weighted sum of the relative frequencies for unigrams, bigrams and trigrams:

P(ti |ti−2, ti−1) = λ1P̂(ti) + λ2P̂(ti |ti−1) + λ3P̂(ti |ti−2, ti−1),
where P̂ signifies the maximum likelihood estimate. The weights λn are cal-
culated using the deleted interpolation method; they are calculated once, and
hence do not depend on the particular trigram (Brants 2000).

The total probability for a certain tag sequence coupled with a given token
sequence is finally calculated as the product of all emission and transition
probabilities, and the tag sequence that has the largest probability is chosen.
With the default window sizes, we get the following formula:

argmax
t1 ...tT

P(tT+1|tT)
T∏
i=1

P(ti |ti−2, ti−1)P(wi |ti−1, ti)

The optimal tag sequence, which maximizes the compound probability, is
found dynamically using the Viterbi algorithm. To speed up the processing time
of the algorithm, a beam search is used, whereby some states are discarded
according to a certain threshold. In theory, this means that the algorithm is not
guaranteed to find the optimal solution, but with a proper tuning of the width
of the beam search, the actual difference is negligible (Brants 2000).

Unseen words, i. e. words not found in the training data, pose a problem,
seeing that their emission probabilities can not be estimated using the procedure
described above. They can be handled in different ways; the solution adopted
in TnT is to assume that an unseen word has a tag distribution similar to rare
words with the same suffix as the unseen word. In HunPos, the threshold for
what is considered a rare word, as well as the maximum suffix length that is
considered, are both configurable.

11

Additionally, HunPos adds the possibility to use the information in an
external morphological lexicon. HunPos will then restrict the set of possible
tags for an unseen word to those given in the lexicon. The tags are then weighted
as before, using statistics from words with similar suffix.

2.3.2 RFTagger

RFTagger (Schmid and Laws 2008) is an HMM tagger which was developed
with the aim to improve on the problem with sparse data associated with
large tag sets. With detailed morphological tags, the number of tag n-grams
naturally increases dramatically, compared to the simpler tag sets commonly
used for more isolating languages like English. As a consequence of this, a
training set of a given size will cover a smaller percentage of all the tag n-grams
naturally occurring in the language, which in turn means that the tagger will
be less likely to produce the right tags when run on new data. Smoothing can
only partly overcome this difficulty. The adopted solution is to decompose
the tags into feature vectors, instead of regarding them as atomic units. The
transition probability factor in the HMM, which in HunPos is conditioned on
the preceding tags, is then replaced by a product of attribute probabilities.

The other concept that sets RFTagger apart from HunPos is the way these
morphological attribute probabilities are calculated: instead of conditioning
them on all the features of the closest preceding tags, the most relevant combi-
nation of features are chosen by the creation of decision trees.

A separate binary decision tree is built for each value of every attribute.
For example, the decision tree for estimating the probability of the current tag
having the value “ablative” for the case attribute may hypothetically first check
whether or not the plain part of speech of the preceding tag is “preposition”,
then, if not, check if the preceding case attribute is “ablative” as well, and so on,
until ending up on a leaf giving the probability.

Each test in the decision tree checks a feature from one of the preceding tags
within a certain, configurable context (c); default is 2 (trigrams) but Schmid
and Laws report improvements with contexts as large as 10.

Without restricting the growth of a tree during the training phase, there is
the risk that the tree may include increasingly specific tests, based on increasingly
rare evidence, and thus overfits the model to the training data. To avoid this, a
pruning strategy is implemented whereby the number of samples a test node
is based on is multiplied by the information gain of the test (see Schmid and
Laws (2008) for details); if the resulting value falls below a certain threshold p
(by default set to 6), the node is pruned.

Amongst other parameters can be mentioned that RFTagger, like HunPos,
can make use of a supplementary lexicon, providing information about unseen
words, or additional tags to words present in the training data. By using the ar-
gument -s, unseen sentence initial words will be treated as their corresponding
lower-case forms. A couple of other parameters can be set, mostly relating to
different levels of smoothing, but these have not been used in this work.

12

2.3.3 MATE tools

Because of Latin’s relatively free word order and rich morphology, there is, as
pointed out by Lee et al. (2011) amongst others, a considerable interaction
between the morphology and the syntax, such that it often is the case that a
sentence has to be syntactically parsed in order to successfully disambiguate
between different morphological analyses of a word: an ambiguous word may
agree with (depend on) a distant word, and the relationship between them
can not satisfactorily be captured by tagging techniques operating on a smaller
context. Unfortunately, automatic parsing often relies on having tagging done
in advance, which causes a kind of chicken-and-egg problem: if a word is
erroneously tagged, the parser may not be able connect it to the word it agrees
with. The solution that would benefit both tasks is to perform the tagging and
the parsing simultaneously; this was successfully demonstrated with Latin by
Lee et al. (2011) (see section 2.4.2 for more details on their experiments).

MATE tools is a publicly available suite of NLP software, which include
an experimental transition-based dependency parser performing joint parsing
and morphological tagging (Bohnet and Nivre 2012; Bohnet et al. 2013). In
transition-based dependency parsing, the future nodes (each labeled with a
token) are first placed in a queue, and a stack is initialized with a root node.
The dependency tree is then built by the application of transition rules, which
change the parser configuration in different ways: the Right-Arc transition
creates a labelled directional arc from the node on top of the stack to the second
topmost, and removes it from the stack; the Left-Arc transition makes an arc in
the opposite direction, and thus removes the second topmost node; the Shift
transition moves the frontmost node from the queue to the stack. To these is
added the Swap transition which can reorder the nodes, so that non-projective
trees can be built (Nivre 2009). At the end, the queue is empty, and all nodes
have been incorporated in the tree.

The probability for a transition to occur is based on a wide range of features
from any part of the current parser configuration, weighted according to a
weight vector learned from the training data. The best sequence of transitions
is found using a beam search.

To perform the joint tagging in MATE tools, the shift transition is modified
to also tag the node. Bohnet et al. (2013) describe several different operating
models for the parser, but according to the configuration that gave the best
results on most of the tested languages, the plain PoS tags and the morphological
descriptors are selected independently. The morphological tags themselves are
however regarded as atomic, to avoid risking creating inconsistent descriptors.

2.4 Previous work

2.4.1 The Māccer macronizer

Māccer, an online application for macronizing Latin text developed by Felipe
Vogel, was made public in January 2015.4 It does not perform any morphologi-
cal analysis, but instead relies on a word list of annotated forms, collected from

4http://fps-vogel.github.io/maccer/

13

http://fps-vogel.github.io/maccer/

various macronized texts available online. Unknown words are clearly marked
as such in the output.

There is a rudimentary disambiguation of homographic forms in place, based
on the frequency of the different macronized forms in the source texts. If the
difference in frequency is not large enough, the differing vowels are marked as
ambiguous, being left for the user to correct manually. From the information
available on the website, the system does not seem to take any contextual
information into consideration. Plans for the future allegedly include expanding
the word key with automatically generated inflected entries.

2.4.2 Latin PoS tagging

Using the TreeTagger program trained and evaluated (with 10-fold cross-
validation) on an early version of the Latin Dependency Treebank consisting
of 30 457 tokens, Bamman and Crane (2008) achieved 95% accuracy when
resolving the plain parts of speech, and 83% accuracy in assigning the full
morphological tags. When analysing the separate morphological features, case
and gender proved most difficult to get right.

Poudat and Longrée (2009) performed an extensive examination of two
taggers, MBT and TnT, using different parts from the LASLA corpus, particu-
larly with the aim to test the different taggers’ sensitivity to stylistic, diachronic,
generic and discursive variations. A third tagger, TreeTagger, was also consid-
ered, but was discarded since it could not handle the extremely large tag set of
LASLA, consisting of 3 732 tags. For all experiments, the taggers were evaluated
on the same five test sets, each from a separate author (Caesar, Sallust, Quintus
Curtius, Cicero, and Catullus). A large number of increasingly larger training
sets were used, with the following general results: TnT had consistently better
accuracy than MBT, surpassing it by on average 4.8 percentage points; training
on texts by the same author as that of the test set gave better results than when
testing on other authors, but, when training and testing on the same author, the
results increased if the training set also encompassed additional authors – in
other words, more data is always beneficial.

Further processing of the results of Poudat and Longrée (2009), by calculat-
ing the average accuracy over all the five separate test sets (weighted according
to their respective size), reveals that the best accuracy when using a training
set of moderate size (138 000 tokens) was 78.99%, achieved by TnT trained
on a collection of historians from the first century BC. With a larger training
set, 352 000 tokens, including also later historians, the accuracy increased to
84.04%. Extending the training data further with a large part of the Ciceronian
corpus, reaching a total of 607 000 tokens, increased the average accuracy of
TnT marginally to 84.09%.

Passarotti (2010) briefly reports on an experiment where HunPos achieved
96.78% accurate PoS tags when trained and tested on the IT-TB (61 024 tokens),
and 89.90% accuracy on the full morphological tags.

With their system performing joint morphological tagging and dependency
parsing, Lee et al. (2011) achieved a slight increase in the accuracy of the
morphological tags compared to how the system performed when the tagging
was done separately. Especially adjectives and participles benefited from the
joint approach. Lee et al. present their accuracy scores only for the individual

14

attributes: on average, the scores (from the joint model) are higher than those
achieved by Bamman and Crane (2008). This was especially the case with
gender (1.0 percentage point increase) and number (0.75 p. p. increase), while
the accuracies of tense, mood and voice were slightly lower (by 0.4, 0.4 and
0.3 percentage points, respectively).

Skjærholt (2011a) ran a large number of experiments using various parts of
the PROIEL corpus and two different taggers: TnT and Wapiti, the later being a
sequence labeller based on so-called conditional random fields (CRF). Amongst
the results can be noted 96.87% accuracy on plain PoS tags with TnT, using
cross-validation on De Bello Gallico and the Vulgate. The corresponding accuracy
of the MSD tagging was 88.9%. The CRF models did not give substantially
better results than HMM tagging with TnT; Skjærholt however speculates that
they would benefit from more training data.

15

3 Methodology

3.1 System overview
To perform automatic annotation of Latin vowel lengths, I propose a system
based on common NLP modules (a tokenizer, a lemmatizer, and a PoS tagger)
in combination with the Morpheus morphological analyser. Either the Latin
Dependency Treebank (LDT) or PROIEL can serve as training data to the
tagger; for the lemmatizer, only LDT can be used, because the lemmas found
in PROIEL are incompatible with those in Morpheus.

The text which shall be annotated is thus first tokenized according to the
standard of the corpus used to train the statistical tools. The set of unique
tokens is then sent to Morpheus, which for each token reports the possible
analyses, in the form of triples consisting of a morphological tag, a lemma,
and the corresponding word form with vowel lengths marked. The tokenized
text is then fed to the PoS tagger and the lemmatizer, which may make use of
the Morpheus analyses to improve their results. For each token, the predicted
morphological tag and lemma are then matched to one of the analyses given
by Morpheus for the token. The resulting series of macronized words is finally
detokenized, to produce a copy of the original text with marked long vowels.
The whole workflow is described schematically in figure 3.1.

Original
text

Tokenizer Morpheus

PoS tagger

Lemmatizer

Matching Macronized
text

Figure 3.1: Workflow of the vowel length annotating system.

The system thus ultimately depends on Morpheus to provide the right
vowel lengths. While it, to the best of my knowledge, is the best open source
resource for Latin morphological analysis and corresponding vowel lengths, it
was unfortunately found that the reported macronized forms could not always
be relied upon. In particular, vowel lengths in inflectional endings were often
insufficiently marked. Many errors had also crept in during the automatic
conversion of the original dictionary (Lewis and Short 1879); for example, it
was not uncommon to find erroneously segmented stems. Thus, as a prerequisite
to our vowel length annotation system, the database and inflectional rules of
Morpheus had to be reviewed and amended: 25 vowels in inflectional endings

16

were corrected, and 638 individual word forms or stems were modified in some
way. The resulting patched version, which the rest of this thesis is based upon,
is available on GitHub.1

In order to compare and map the output from the PoS tagger to the Mor-
pheus analyses, a conversion between their respective formats has to be per-
formed. This functionality was implemented in the form of a Python script,
which parses the human readable Morpheus analyses and stores them in an
intermediate format, which in turn can be converted to tags compatible with
either corpus.

To ensure the soundness of the conversion script, the extent to which the
converted Morpheus analyses cover each corpus was evaluated using a metric
borrowed from Skjærholt (2011a, p. 47): for each unique word form in the
target corpus that is known to Morpheus (i. e. that can be analysed in at least
one way), the set of tags applied to that word form throughout the corpus
is collected; if a tag from this set is not found in the converted Morpheus
analyses, it is counted as missing. The total number of missing tags is compared
to the total number of unique word form and tag pairs in the corpus (again
disregarding those word forms unknown to Morpheus). Using this method, 5%
of the tags in LDT are missing from the converted Morpheus analyses. The
corresponding ratio for the PROIEL corpus is 9%. This could be compared to
the 11% reported by Skjærholt, who performed a similar conversion of tags in
the LDT format to the PROIEL corpus, using a series of manually applied rules.

Obviously, it will not always be the case that a predicted tag and lemma
pair is amongst the Morpheus analyses of a given word. The possible reasons for
this are many: it could be because of an erroneous tag or lemma, or a deficiency
in the morphological analyser or its lexicon, or a problem with the conversion
between the output from Morpheus and the tag format used in the corpus. In
any case, the analysis with the most similar morphological tag is chosen, being
the best available suggestion. The predicted lemma is taken into consideration
only when two or more analyses have equally similar tags. If the word form is
unknown to Morpheus, no vowels are marked.

The similarity between two tags is calculated in a fairly straightforward
way: for each attribute (position in the tag) the two values are compared,
and the differing attributes are counted. Participles are a notable exception to
this principle: because of their close relation to adjectives (and nouns!), and
consequent inconsistencies in the corpus tags and the Morpheus analyses, it
seemed best to modify the calculated distance in that case: using LDT tags as an
example (cf. table 2.1), the distance between the participle v-sppamg- and the
adjective a-s–-ng- is regarded as being two steps, one for the differing part of
speech, and one for the differing gender (masculine vs. neuter); in other words,
when participles are compared with adjectives or nouns, the tense, mood and
voice attributes are ignored. In practice though, it might be doubtful whether
this ad hoc exception has any actual influence on the annotation result.

If it is necessary to select between analyses on the basis of the lemma, the
one with the most similar lemma is chosen, according to the editing distance.
This is to accommodate to different spelling conventions and occasional spelling
errors.

1https://github.com/Alatius/morpheus/releases/tag/thesis

17

https://github.com/Alatius/morpheus/releases/tag/thesis

3.2 Tokenization
Tokenization in Latin is for the most part an uncomplicated matter; the only
real difficulty lies in correctly separating the enclitic particles, mainly -que, -ne
and -ve (Lee et al. 2011; Skjærholt 2011a). They can be postfixed to any word,
without any apostrophe or other indication that the resulting word form is
a composite. Occasionally, this may give rise to genuinely ambiguous forms,
such as domine, which can be either the noun domı̆nus inflected in the vocative
case (‘O master’) or the adverb domı̄ (‘at home’) joined with the interrogative
particle -ne.

This has been addressed in a rudimentary fashion: if a word that ends in
what looks like an enclitic particle is a correct Latin word in itself (according
to Morpheus) it is as a rule not divided. A small class of border cases (notably
neque, ‘nor’), which are divided in the corpora but included as single words in
Morpheus and lexica, are excepted from this rule, and are thus divided.

This has the effect that domı̄ne can never become marked as such (with
long ı̄). In practice though, this is no big problem, as an analysis of PROIEL
reveals that this situation is very rare: out of 147 331 tokens, 1 587 are enclitics,
and only once does an enclitic combine with the preceding word to form an
ostensibly correct form in itself.2

3.3 PoS tagging
With a large range of different PoS taggers at our disposal, the question naturally
arises which of them is best suited as the tagging module in our vowel annotating
system. A couple of PoS taggers were selected for evaluation based on their
availability, license, ease of use, speed, interesting features, or documented good
performance with large morphological tag sets: HunPos, RFTagger, and the
experimental MATE tools.

With regard to training resources, there are, as previously mentioned, two
corpora which are suitable for our purposes: LDT and PROIEL. Each has things
speaking for and against it: LDT, while smaller, is representative for a larger
range of classical literature, and its lemmas and tags are more similar to those
used by Morpheus. PROIEL on the other hand is almost three times as big, but
consists mainly of the less classical Vulgate. Instead of settling for one of them,
I have opted to evaluate the taggers on both corpora in parallel.

The sentences in each corpus were first randomly mixed, before being
partitioned into training, development, and test sets. There are both pros and
cons with this approach: on the one hand, the corpus becomes unnaturally
uniform, which means that the percentage of unknown words in the test set
will be smaller than in a real case scenario (Brants 2000); on the other hand,
the risk is minimized that an unfortuitous random choice of test set skews the
final result.

2From Cicero, Ad Atticum 1.17.6: In pūblicāne rē? (‘In public affairs?’). Here, pūblicā is an
ablative adjective, but publicane looks either like a vocative (pūblicānĕ) or an adverb (pūblicānē).
If tagged as the first, the vowels happen to come out correct anyway; in the other case, the
final -e is erroneously marked as long. Of course, in either case the faulty tokenization may have
repercussions on the tags of the surrounding words.

18

The shuffled corpora were divided in the following way: 10% was set apart
as the test set; the remaining 90% was then divided into ten equally large
parts, which were used to perform 10-fold cross-validation when optimizing
the parameters of the taggers. Once the best configuration for a tagger was
found, it was then trained on all ten parts combined, and tested on the as of yet
unseen test set, to give a fair estimation of the tagger’s performance.

The results from the tagging experiments were evaluated both intrinsically
(in terms of tagging accuracy, TA) and extrinsically, i. e., with respect to how
much the predicted tags help in annotating the vowel lengths when plugged
into the proposed vowel annotating system. In order to isolate the effect the
taggers have on the end result, this was done by letting the system mark vowels
in each development/test set, and then counting the percentage of macronized
words that are identical to the annotation we get when using the morphological
tags from the gold standard instead (all other things being equal). Because
Morpheus compatible lemmas are not available in the PROIEL corpus, all
vowel length annotations (both when using corpus tags and predicted tags) are
done without information about lemmas: if several analyses match the tag, the
first one reported by Morpheus is chosen. In this way the vowel length accuracy
based on tags (VLAt) is calculated. To set the scores into perspective, we can
compare them with the results from a baseline tagger, which automatically tags
punctuation correctly, and for the rest of the tokens simply chooses the first
Morpheus analysis; unknown words are then automatically counted as wrongly
tagged.

When evaluating the performances of different taggers, the difference be-
tween the final results were tested for statistical significance using McNemar’s
test, as suggested by Dietterich (1998): Let a denote the number of tokens
tagged correctly by tagger A but mistagged by B, and, vice versa, let b be the
number of tokens correctly tagged by B but not by A. The null hypothesis is
that A and B perform equally well, in which case a would be more or less equal
to b. McNemar’s test is used to estimate whether the difference is statistically
significant using the following test statistic:

χ2 =
(|a − b| − 1)2

a + b

Provided that the null hypothesis is correct, the probability p that χ2 > 3.84
is less than 0.05, which is a commonly accepted threshold. Thus, if χ2 > 3.84
the null-hypothesis is rejected, and we conclude that the difference between
the two taggers is statistically significant. In the same way the significance of
differences between vowel length annotations is estimated.

Along with the optimization of the first tagger, HunPos, the two corpora
were preprocessed in a couple of different ways, to establish which versions
should be used for the best results. The following modifications were tested:

• Punctuation is a feature that is treated differently in the two corpora;
while LDT includes punctuation marks as individual tokens, in PROIEL
they are only represented as additional attributes to the regular word to-
kens. The question then is whether punctuation marks should be included
in the input to the taggers.

19

• As noted in chapter 2.2.2, the Latin Dependency Treebank includes a cou-
ple of non-standard tags, which lack one or more expected morphological
attributes. Is the presence of these tags in the training data detrimental
to the vowel length annotation? To answer that question, an alternative
version of the treebank was developed, with 76 modified tags.3

The variants of the corpora which were found to give the best results together
with HunPos were then used in all the following experiments, under the as-
sumption that the results would carry over also to the other taggers.

HunPos and RFTagger were both optimized with regard to the parameters
that were judged to have the most influence on the tagging results, primarily
the sizes of the contexts used to estimate the conditional probabilities in the
HMM models. Additionally, for HunPos the rare words frequency threshold
was optimized; for RFTagger the tree pruning threshold.

Unfortunately it was not possible to optimize MATE tools in the same
way as HunPos and RFTagger, due to the very long training times. Instead it
was run with the configuration that gave the best results on Czech, German
and Hungarian according to Bohnet et al. (2013), namely with soft lexical
constraints in the form of the Morpheus lexicon, and with 800 word clusters
generated from a plain text corpus of about 10 000 000 tokens created by
concatenating the Latin texts available from the Perseus Project.4

3.4 Lemmatization
Lemmatization is a necessary component in the system in order to successfully
disambiguate between identical word forms with identical tags. Similar to how
different taggers were evaluated both intrinsically and extrinsically, we can
evaluate a lemmatizer by calculating both the lemma accuracy (LA) and the
accuracy of the macronized words we get with the help of the lemmas, VLAl .

The way the VLAl measure is calculated is mostly analogous to how the
VLAt score is defined, though with some important differences: the vowel
length gold standard that is used as a basis for the accuracy count is now
generated from the LDT corpus only, by matching, for each token, both the
tag and the lemma to the Morpheus analyses. For those tokens where such a
matching is possible, the lemmas from the lemmatizer are used in conjunction
with oracle tags to select a macronized word form according to the principles
described above. VLAl is then defined as the percentage of the macronized
words that are identical to the corresponding macronized words in the generated
gold standard.

Three lemmatization strategies were evaluated:

1. A baseline lemmatizer that marks punctuation correctly, and for the rest
of the tokens chooses the lemma from the first Morpheus analysis. If
unknown to Morpheus, the word form itself is chosen as lemma.

2. A basic lemmatizer that chooses the lemma which is most commonly
seen in the training data together with the word form. If however the

3https://github.com/Alatius/treebank_data/releases/tag/thesis
4http://www.perseus.tufts.edu/hopper/opensource/download

20

https://github.com/Alatius/treebank_data/releases/tag/thesis
http://www.perseus.tufts.edu/hopper/opensource/download

word form is unseen, it is analysed by Morpheus, and out of the proposed
lemmas the one is chosen that is most common in the training data
(regardless of word form). If none of the lemmas occurs, the lemma of
the first analysis is chosen. If no analysis is available, the word form itself
is copied as the lemma.

3. PurePos, a reimplementation of HunPos in Java, with added lemmatizer
functionality (Orosz and Novák 2013).

PurePos was optimized using 10-fold cross-validation on 90% of LDT, in the
same way as in the tagger optimization. Afterwards, the three lemmatization
approaches were evaluated on the unseen test set.

3.5 System evaluation
In order to assess the complete system’s performance in a real usage scenario,
four texts with marked vowel lengths were chosen: Fabulae Faciles (Ritchie
1903), Alicia in Terra Mirabili (Carroll 2011), the first book of Tacitus’ Annales
(Winge 2008), and Life of Hannibal by Cornelius Nepos (Mulligan 2013). The
first two are neo-Latin texts, written in a fairly simple language, with short
uncomplicated sentences; the other two are authentic classical works.

These experiments also give us an opportunity to finally decide which of the
two corpora that works best as training data for the PoS tagger: for this purpose,
the system was run with the tagger trained on either of the two corpora. A
couple of other systems were also tested, implementing some less sophisticated
methods for solving the vowel length annotation problem:

• A baseline system, which for each word simply gives the vowel lengths of
the first reported Morpheus analysis.

• A basic system, which looks up each word in Morpheus, and chooses
the macronized word form that is most common in LDT (i. e., in the
macronized text gotten from LDT by matching tokens, tags, and lemmas
to Morpheus analyses). This simple statistical method is comparable to
the strategy used by the Māccer macronizer (see chapter 2.4.1).

• An oracle system, which chooses the macronized word form from Mor-
pheus that is most similar to the one in the annotated text. This gives the
upper bound for what the system can achieve with optimal5 lemmatiza-
tion and tagging, without improvements done to the Morpheus lexicon.

For the evaluation of these final results, a more straightforward measure has
been used, namely the plain vowel length accuracy (VLA), i. e., the percentage
of vowels that were correctly marked. By considering individual vowels (instead
of counting whether whole words are correctly macronized or not) we get
a more fine-grained measure, which better adapts to different conventions,
such as different treatments of hidden quantities (cf. chapter 2.1). It also
directly measures the amount of editing that has to be performed to correct the
automatically annotated text.

5Optimal in a pragmatic sense, not necessarily optimal from a linguistic perspective.

21

4 Results

4.1 Tagger optimization

4.1.1 HunPos

With all the tested taggers, the user has the option to provide a lexicon, which
for each unknown token (i. e., not present in the training data) in some way
restricts the range of available tags that can be applied. Since the purpose of the
tagging module in the system is to find tags which are to be matched with the
Morpheus analyses, it makes perfect sense to use the output from Morpheus as
lexicon. To make sure that doing so indeed boosts the performance, HunPos was
run with and without this feature (with default settings otherwise). Finally, the
tagging was also performed using the corrected version of LTD. The collected
results for the two corpora are presented in table 4.1. The positive effect of a
lexicon is unmistakable. Using the corrected corpus benefits the tag accuracy,
although the increase in vowel length accuracy is negligible. In the following
experiments, the corrected version of LDT is used, unless otherwise noted.

To choose between the tags provided by the lexicon, HunPos uses statistics
from rare words with the same suffix as the word to be tagged. The maximum
frequency that a word may have in the training data to be regarded as rare, f , is
set to 10 by default, but can be modified; figure 4.1 shows how the performance
depends on this frequency threshold. The value resulting in the best VLAt on
both corpora, 80, was then chosen for the following experiments. Different
values for the maximum suffix length (s) was also tested in tandem, but that
parameter did not affect the results in any substantial way, and has thus not
been included in the diagrams.

Punctuation in Latin generally gives information about the syntactic struc-
ture of the sentence, which might be valuable when tagging. On the other
hand, maybe a possible positive effect is negated by increased sparseness in the
data? To test this, HunPos was trained on two versions of each corpus, with or

Table 4.1: The effects of a external morphological lexicon and corrected corpus when
tagging with HunPos, using 10-fold cross-validation on 90% of each corpus.

Lexicon Corrections
LDT PROIEL

TA VLAt TA VLAt

− − 79.49 97.46 87.84 98.91
+ − 84.66 97.56 89.45 98.96
+ + 84.73 97.57 — —

22

97.56
97.58
97.60
97.62

V
L

A
t

(%
)

LDT

5 10 20 40 80 160
84.72
84.74
84.76
84.78

TA
(%

)

f

98.94
98.96
98.98
99.00

PROIEL

5 10 20 40 80 160
89.42
89.44
89.46
89.48

f

Figure 4.1: HunPos with varying rare words frequency threshold (f), using 10-fold cross-
validation on 90% of each corpus.

without punctuation present. For this experiment, only the accuracy of tags
belonging to non-punctuation (TAw) was evaluated.

Optimization of the emission (e) and transition context (t) parameters
were performed in tandem with the punctuation evaluation, since it seemed
reasonable to suspect that the absence or presence of punctuation may influence
the optimal choice of these parameters. The results encompassing the highest
values are presented in figures 4.2 and 4.3. Larger values for e and t were also
tested, but did not give any improvements.

97.50

97.55

97.60

V
L

A
t

(%
)

e = 1 e = 2 e = 3 e = 4

1 2 3 4 5
82.00

82.20

82.40

TA
w

(%
)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
t

Figure 4.2: HunPos on LDT, with () and without () punctuation, with varying
transition (t) and emission (e) contexts.

Including the punctuation from PROIEL thus proves beneficial to both the
tagging and the vowel length annotation.

On LDT, HunPos consistently performed best with t = 2 (trigrams). In-
creasing the emission context past e = 1 improved VLAt slightly when using
punctuation, even though the tag accuracy actually decreased. On PROIEL, the
results are more regular. Even larger values for e and t were tested, but those
did not lead to any improvements.

23

98.90

98.95

99.00

V
L

A
t

(%
)

e = 1 e = 2 e = 3 e = 4

1 2 3 4 5

88.40

88.60

88.80

TA
w

(%
)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
t

Figure 4.3: HunPos on PROIEL, with () and without () punctuation, with varying
transition (t) and emission (e) contexts.

4.1.2 RFTagger

The optimization of RFTagger was done with regard primarily to two parame-
ters: the size of the context window, c (corresponding to the transition context
t of HunPos), and the tree pruning threshold, p. The results at different values
of these parameters are reported in figure 4.4.

97.50

97.60

97.70

97.80

V
L

A
t

(%
)

LDT

1 2 3 4 5 6 7 8 9 10
85.00

85.50

86.00

TA
(%

)

c

98.90

99.00

99.10

PROIEL

1 2 3 4 5 6 7 8 9 10
88.50

89.00

89.50

c

Figure 4.4: RFTagger with different context sizes (c) and two different tree pruning settings,
p = 6 () and p = 7 ().

The default value of p = 6 seems well balanced, but with larger context
windows the vowel length annotation of LDT benefited from slightly more
aggressive pruning. Even higher and lower values, p = 5 and p = 8, were tested,
but did not improve the performance.

Preliminary tests revealed that using the -s argument to treat unseen sen-
tence initial words in the same way as the corresponding lower-case forms
consistently increased both VLAt and TA slightly (the later by about 0.03
percentage points); that setting has therefore been used in all the experiments.

24

4.2 Tagger comparison
For the comparison of the different taggers, the configurations that during the
optimization gave the highest VLAt scores on each corpus were chosen. The
taggers were then trained on the 90% of each corpus that previously had been
used for cross-validation, and were tested on the as of yet unseen test set. The
resulting performances of the three taggers, plus those of the baseline tagger,
are reported in table 4.2.

Since MATE tools works with treebank data, and punctuation is not in-
cluded in the dependency trees in PROIEL, the TA score for MATE tools on
PROIEL had to be adjusted so that it could be compared with the scores from
the other taggers: similarly to the baseline tagger, the punctuation was then
automatically counted as correctly tagged.

Table 4.2: The tagging and vowel length annotation performances of HunPos, RFTagger, and
MATE tools.

Corpus: LDT PROIEL
Tagger Settings TA VLAt Settings TA VLAt

Baseline — 64.68 87.87 — 51.49 91.46
HunPos e = 4, t = 2 85.43 97.48 e = 2, t = 4 90.02 99.01
RFTagger c = 7,p = 7 86.73 97.75 c = 5,p = 6 89.68 99.13
MATE tools — 85.13 98.24 — 90.42 99.06

However, while suggestive, it should be noted that not all of these results
can be demonstrated to be significantly different, according to McNemar’s test.
The significant results are collected in table 4.3 (excluding comparisons with
the baseline tagger). Note that none of the VLAt scores on PROIEL are proven
to be significantly different.

Table 4.3: Statistically significant differences between the taggers.

Corpus Measure
Better Worse Significance
tagger tagger level

LDT TA RFTagger HunPos p < 0.01
LDT TA RFTagger MATE tools p < 0.001
LDT VLAt MATE tools HunPos p < 0.01
LDT VLAt MATE tools RFTagger p < 0.05

PROIEL TA MATE tools RFTagger p < 0.01

Both RFTagger and MATE tools thus compare favourably with HunPos. A
strange outlier is however the low TA of MATE tools on LDT. Thankfully, this
was compensated with a very good VLAt score.

While our study is not concerned with dependency parsing per se, it may be
interesting to note that MATE tools achieved 65.85 UAS (unlabelled attachment
score) on LDT, and 56.80 LAS (labelled attachment score); these far from stellar
results are further indications of the problems MATE tools had with this corpus.
On PROIEL the corresponding scores are more reasonable, with 80.07 UAS
and 73.05 LAS.

25

4.3 Lemmatization

4.3.1 Optimization of PurePos

The best settings for emission (e) and transition contexts (t) when using PurePos
to predict lemmas were found using the same setup as in the tagger optimization.
Two settings for the rare word frequency threshold were also tested, the default
value f = 10, and the value that gave the best VLAt , f = 80. The later gave
consistently better results, and is the only one that is represented in the diagram.

99.69
99.70
99.71
99.72

V
L

A
l

(%
)

e = 1 e = 2 e = 3 e = 4

1 2 3 4 5
93.65

93.70

93.75

L
A

(%
)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
t

Figure 4.5: Lemmatization with PurePos, using 10-fold cross-validation on 90% of LDT, with
varying transition (t) and emission (e) contexts; in all experiments, f = 80.

As can be seen in figure 4.5, VLAt benefited marginally from increased
emission context e, at least for t = 2. Lemma accuracy (LA), on the other
hand, declined both with increasing emission context and increasing transition
context. These general results are in many ways reminiscent of the the results
from the tagging experiments with HunPos on LDT (with punctuation): cf.
figure 4.2. One notable difference is the low LA when t = 2, compared to the
other measures.

4.3.2 Lemmatizer comparison

As in the tagger comparision, the evaluation of different lemmatization strate-
gies was carried out by training on 90% of the corpus (LDT), and testing on
the test set. PurePos was run with the settings that had given the best VLAt
during the optimization, i. e., e = 4, t = 2, f = 80. The results for PurePos and
the two reference lemmatizers are reported in table 4.4:

Table 4.4: Lemmatizer performances on the LDT test set.

Lemmatizer LA VLAl

Baseline 81.86 97.34
Basic 94.48 99.81
PurePos 93.98 99.86

26

PurePos just about beat the Basic lemmatizer on VLAl , with two more
correctly macronized words (out of 4 246), which of course is not statistically
significant; nor can the difference between their LA scores be shown to be
significant using McNemar’s test.

It may nevertheless seem surprising that PurePos got lower LA than the
Basic lemmatizer. Further investigation into the differences between the two
lemmatizers reveals that this is because PurePos relies more on the lemmas in
the lexicon, which not always are spelled exactly as those in the corpus. Because
the macronized word forms are selected by matching lemmas using the Lev-
enshtein edit distance measure, those spelling differences are inconsequential
when VLAl is calculated.

In view of these results, it seems doubtful whether it is worth the trouble to
invoke PurePos as an external lemmatizer, seeing that the easily implemented
basic strategy gives more or less the same end result, and that in a shorter
amount of time.

4.4 System evaluation
For the final evaluation, the system was configured to run with RFTagger as
the PoS tagger, trained on either LDT or PROIEL, and set to mark long vowels
in the four chosen texts. The vowel length accuracies (VLA) for these two
setups, along with the accuracies achieved by the more rudimentary reference
systems are reported in figure 4.6. MATE tools was also considered as tagger,
but preliminary testings revealed no improvements to the VLA scores, and
therefore the dramatic difference in tagging time between the two programs
made the balance tip in favour of adopting RFTagger instead. For lemmatization,
the Basic approach was chosen, considering its fully satisfactory results and
easier integration, and also because PurePos was quite slow in comparison.

Ritchie Alicia Annales Hannibal

94

96

98

100

V
L

A
(%

)

Baseline
Basic
LDT
PROIEL
Oracle

Figure 4.6: Vowel length accuracy using LDT vs. PROIEL to train RFTagger, compared to
various reference systems.

The first thing to notice is that already the basic system gives quite good
results, with at least 97% VLA on most texts. Both the basic and the baseline
system are slightly better at predicting the vowel lengths in the classical texts
(Annales and Hannibal) than in the neo-Latin texts (Ritchie and Alicia).

27

With the help of lemmatization and PoS tagging (trained on either LDT or
PROIEL), the average increase of VLA on the two neo-Latin texts, compared
to the performance of the basic statistical system, was 0.8 percentage points.
On the classical texts the improvement was smaller, about 0.5 p. p. on average.
This may be because they are more difficult to tag, or, perhaps more probable,
because the already good results from the basic system give less room for
improvements: discounting the Ritchie text, the accuracy is fairly stable at or
slightly above 98%.

The overall lower scores on Ritchie can be explained by the fact that its
vowel lengths were annotated almost a century ago: since then, progress in
historical linguistics have changed our conception of which vowels are short
and which are long in a number of cases. Making up for these changes, the
results are very similar to those of Alicia (except for the baseline system).

As for the different corpora, the choice seems not that important. The
difference in performance between the system trained with LDT and the one
trained with PROIEL is statistically significant only on Annales (p < 0.05),
where LDT comes out slightly ahead of PROIEL (98.13% vs. 97.99% VLA).

To gain a better understanding of the nature of the errors that prevent the
system from achieving the same results as the human annotators, the shortest
text, Hannibal, was picked out for a more careful investigation. Each vowel
that had got a different length ascribed to it (using PROIEL as training data)
than in the human created gold standard was analysed, and the reason for the
discrepancy was counted as belonging to one of five categories:

• 33 vowels had got their lengths erroneously classified because of an
incorrect tag.

• 9 were due to faulty lemmatization.

• 20 were incorrectly marked in Morpheus’ lexicon, or belonged to words
that were not known at all.

• 45 discrepancies could be attributed to different vowel length marking
conventions.

• 3 had in fact got the correct length, but were incorrectly marked in the
gold standard.

The choice between some of these categories, particularly the last three, is
naturally somewhat arbitrary. Cases where the vowel was in a closed syllable,
and the vowel length is hidden and thus more difficult to know for sure, have
been counted as being due to different conventions.

28

5 Discussion and conclusion

With the help of morphological PoS tagging and lemmatization, the accuracy of
our vowel length annotation system has been shown to increase by between 0.5
and 0.8 percentage points, compared to the performance of a basic statistical
system (figure 4.6). While this may not seem much, it results in a decrease of
the necessary manual post-editing by at least 20% (up to 50% with an improved
lexicon).

The results from the tagging experiments (see table 4.2) are roughly on
par with those reported in the literature (chapter 2.4.2), or even slightly bet-
ter. On average, the HunPos tagger falls slightly behind both RFTagger and
MATE tools on morphological tagging, and especially when used for annotating
vowel lengths. The former has the advantage of predicting each morphological
attribute separately; the later benefits from the syntactic analysis that is per-
formed together with the tagging. In light of this, it seems concievable that a
combination of these two features would prove beneficial to the VLA score.

Between LDT and PROIEL, no clear winner could be determined; while
PROIEL supposedly has an advantage due to its larger size, it was found that
training on LDT instead gave a better result on a text by Tacitus. While not
proven statistically significant, the opposite seems to be true for Cornelius
Nepos. It might be that we here see the effect of different domains (cf. Skjærholt
(2011a) and Poudat and Longrée (2009)): while neither author is represented
in any of the corpora, Nepos is commonly regarded as an easy author, and it
may be that his language in many respects is similar to that of Caesar and the
Vulgate, which make up a large part of PROIEL. The more eclectic composition
of LDT may on the other hand make the system better prepared to tackle
Tacitus, who is known as a more difficult author, with terse and varied syntax.

The optimization experiments revealed some cases where the default tagger
parameters are not optimal for Latin. First, increasing the rare word frequency
cutoff in HunPos proved beneficial in most cases (figure 4.1). This confirms
the suspicion of Skjærholt (2011a, p. 51) that the frequency cutoff should
be modified, seeing that an unknown word may just as well be an unseen
inflectional form of a common word, rather than a genuinely rare lemma.

The default context windows size in RFTagger is by default very conservative.
This parameter (c) can with advantage be increased to 3 or 4 or even more
(cf. figure 4.4), as also confirmed by Schmid and Laws (2008) in their own
experiments on German.

The experiments also revealed some interesting differences between the
intrinsic and extrinsic evaluation. Particularly when using RFTagger (see fig-
ure 4.4), it was found that VLAt benefited more from larger context windows
than does TA. With HunPos, this tendency could not be as clearly demonstrated,

29

though the small decrease in tagging accuracy on LDT, together with the con-
curring increase in VLAt as the emission context increased (figure 4.2) may
hint at a similar phenomenon.

One hypothesis for why this may be the case is that a larger context window
may improve inflectional agreement between separated words, and that the
decrease in tag accuracy (supposedly resulting from the increased sparseness)
mainly concerns tags (or rather individual morphological attributes) that are
inconsequential to the choice of different vowel lengths. An analysis of the
differences would have to be carried out to answer that conclusively.

A number of ways can be envisioned to improve the performance. The
idea was briefly entertained to merge the two corpora into one, and thus get a
considerable increase in the available training data. This poses a challenge due
to their various peculiarities and different tag sets, but if done carefully it may
prove beneficial. At the same time, it must be remembered that the tagging
accuracy is already quite good, and that a consolidation of powers thus may
lead to only a marginal improvement.

The lemmatizer which has been used is quite basic, but, from the very
limited investigation into the matter, it seems that this is not an overwhelming
problem, as even dedicated tools have problems exactly where reliable lemma-
tization is most needed: when the lexicon provides several lemma alternatives
to a word form and tag pair. Some not so uncommon homographs make for
a real challenge to a lemmatizer, such as the pair lĕvis ‘light’ (adj.) and lēvis
‘smooth’ mentioned in the introduction; in cases such as these, a more advanced
semantic analysis is probably needed.

However, the single module that, if improved, would have the most dra-
matic effect on the performance is probably the Morpheus lexicon. As shown
in figure 4.6, there is a considerable gap between the accuracy of the oracle
system and a perfect result. With a full coverage of the classical vocabulary
(a grand vision, to be sure, but not impossible), the vowel length accuracy on
classical texts may reach 99%, or thereabouts. In lieu of this, an improvement
of the vowel lengths in unknown words could be gained by attempting to mark
vowels in suffixes, based on the predicted tag and known inflectional endings.

30

Bibliography

Allen, W.S. (1989). Vox Latina. Second edition. Cambridge University Press.
ISBN: 9780521379366.

Bamman, David and Gregory Crane (2008). “Building a dynamic lexicon from
a digital library”. In: Proceedings of the 8th ACM/IEEE-CS joint conference on
Digital libraries. ACM, pp. 11–20.

Bamman, David and Gregory Crane (2011). “The ancient Greek and Latin de-
pendency treebanks”. In: Language Technology for Cultural Heritage. Springer,
pp. 79–98.

Bamman, David, Marco Passarotti, Gregory Crane, and Savina Raynaud (2007).
Guidelines for the Syntactic Annotation of Latin Treebanks (v. 1.3).

Bohnet, Bernd and Joakim Nivre (2012). “A transition-based system for joint
part-of-speech tagging and labeled non-projective dependency parsing”. In:
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning. Association
for Computational Linguistics, pp. 1455–1465.

Bohnet, Bernd, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter,
and Jan Hajič (2013). “Joint morphological and syntactic analysis for richly
inflected languages”. Transactions of the Association for Computational Lin-
guistics 1, pp. 415–428.

Brants, Thorsten (2000). “TnT: a statistical part-of-speech tagger”. In: Proceed-
ings of the sixth conference on Applied natural language processing. Association
for Computational Linguistics, pp. 224–231.

Carroll, L. (2011). Alicia in Terrā Mı̄rābilı̄. Ed. by Johan Winge. Evertype. ISBN:
9781904808695.

Crane, Gregory (1991). “Generating and parsing classical Greek”. Literary and
Linguistic Computing 6.4, pp. 243–245.

Dietterich, Thomas G (1998). “Approximate statistical tests for comparing
supervised classification learning algorithms”. Neural computation 10.7,
pp. 1895–1923.

Halácsy, Péter, András Kornai, and Csaba Oravecz (2007). “HunPos: an open
source trigram tagger”. In: Proceedings of the 45th annual meeting of the ACL
on interactive poster and demonstration sessions. Association for Computa-
tional Linguistics, pp. 209–212.

Haug, Dag TT and Marius Jøhndal (2008). “Creating a parallel treebank of
the old Indo-European Bible translations”. In: Proceedings of the Language
Technology for Cultural Heritage Data Workshop (LaTeCH 2008), Marrakech,
Morocco, 1st June 2008, pp. 27–34.

Lee, John, Jason Naradowsky, and David A Smith (2011). “A discriminative
model for joint morphological disambiguation and dependency parsing”.

31

In: Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies: Volume 1. Association for
Computational Linguistics, pp. 885–894.

Lewis, Charlton Thomas and Charles Short (1879). A Latin Dictionary Founded
on Andrews’ Edition of Freund’s Latin Dictionary. Revised, Enlarged and in
Great Part Rewritten by CT Lewis and Charles Short. Clarendon Press.

McGillivray, Barbara (2013). Methods in Latin Computational Linguistics. Brill.
Mulligan, Bret (2013). Nepos: Life of Hannibal. URL: http://dcc.dickinson.

edu/nepos-hannibal/preface (visited on 2015-05-12).
Nivre, Joakim (2009). “Non-projective dependency parsing in expected linear

time”. In: Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1. Association for Computational Linguistics,
pp. 351–359.

Orosz, György and Attila Novák (2013). “PurePos 2.0: a hybrid tool for mor-
phological disambiguation.” In: RANLP, pp. 539–545.

Passarotti, Marco (2010). “Leaving behind the less-resourced status. The case
of Latin through the experience of the Index Thomisticus treebank”. In:
Proceedings of the 7th SaLTMiL Workshop on the creation and use of basic
lexical resources for less-resourced languages, LREC 2010, La Valletta, Malta.

Piotrowski, Michael (2012). “Natural Language Processing for Historical Texts”.
Synthesis Lectures on Human Language Technologies 5.2, pp. 1–157.

Poudat, Céline and Doninique Longrée (2009). “Variations langagières et an-
notation morphosyntaxique du latin classique”. Traitement Automatique des
Langues 50.2, pp. 129–148.

Ritchie, Francis (1903). Ritchie’s fabulae faciles: a first Latin reader. Ed. by J.C.
Kirtland. Longmans, Green, and Co. URL: http://www.gutenberg.org/
ebooks/8997 (visited on 2015-05-12).

Schmid, Helmut and Florian Laws (2008). “Estimation of conditional probabili-
ties with decision trees and an application to fine-grained POS tagging”. In:
Proceedings of the 22nd International Conference on Computational Linguistics:
Volume 1. Association for Computational Linguistics, pp. 777–784.

Skjærholt, Arne (2011a). “Ars flectandi”. MA thesis. Norway: University of
Oslo.

Skjærholt, Arne (2011b). “More, Faster: Accelerated Corpus Annotation with
Statistical Taggers.” JLCL 26.2, pp. 151–163.

Winge, Johan (2008). Tacitus: Annales book I. URL: http://web.comhem.se/
alatius/latin/tacann01.html (visited on 2015-05-12).

32

http://dcc.dickinson.edu/nepos-hannibal/preface
http://dcc.dickinson.edu/nepos-hannibal/preface
http://www.gutenberg.org/ebooks/8997
http://www.gutenberg.org/ebooks/8997
http://web.comhem.se/alatius/latin/tacann01.html
http://web.comhem.se/alatius/latin/tacann01.html

A Tag sets

As a preparation for the development of a tag conversion script, it was neces-
sary to gain familiarity with the two treebanks and the composition of their
morphological tags. The tags of LDT are presented in tables A.1 and A.2, and
tables A.3 and A.4 give the corresponding data for the PROIEL corpus.

Table A.1: Tag set of the Latin Dependency Treebank, excluding verbs. Tags occurring only
once are not included. The asterisk * stands for any possible value from the corresponding
field of the PoS tag, as given in table 2.1.

Part of speech
PoS-tag

Freq.
PoS P N T M V G C D

undefined
- - - - - - - - - 231
- - * - - - * * - 4

adjective

a - - - - - - - - 4
a - * - - - - * - 11
a - * - - - - * * 5
a - * - - - * * - 5 342
a - * - - - * * * 256

conjunction c - - - - - - - - 5 648

adverb
d - - - - - - - - 4 056
d - - - - - - - * 4

exclamation e - - - - - - - - 116
interjection i - - - - - - - - 1
numeral m - - - - - - - - 272

noun

n - - - - - - - - 10
n - - - - - * - - 2
n - * - - - - * - 19
n - * - - - * - - 32
n - * - - - * * - 13 930

pronoun
p - - - - - - - - 8
p - * - - - * * - 4 614

preposition r - - - - - - - - 2 824
punctuation u - - - - - - - - 4 561

33

Table A.2: Tag set of verbs in the Latin Dependency Treebank. Tags occurring only once are
not included.

Part of speech
PoS tag

Freq.
PoS P N T M V G C D

verb

v - s p - a n * - 7
v - s p d a n * - 17
v - - f n a - - - 16
v - - p n a - - - 1 003
v - - p n p - - - 285
v - - r n a - - - 104
v - s p g a m a - 2
v - * p g p * * - 138
v - * f p a * * - 69
v - * p p a * * - 533
v - * p p a * * * 5
v - * r p a * * - 17
v - p r p d m n - 2
v - * r p p * * - 1 569
v * * - i/s a - - - 10
v * * p i/s * - - - 3 527
v * * p m * - - - 258
v * * i - p - - - 2
v * * i i/s * - - - 1 148
v * * f i * - - - 422
v * * f m a - - - 10
v * * r - a - - - 3
v * * r i/s a - - - 1 646
v * * l i/s a - - - 338
v * * t i a - - - 38

34

Table A.3: Tag set of PROIEL, excluding verbs. The asterisk * stands for any possible value
from the corresponding field of the MSD, as given in table 2.2.

PoS meaning PoS
Morpho-syntactic descriptor

Freq.
P N T M V G C D - I

adjective
A- - - - - - - - - - n 14
A- - * - - - * * * - i 7 011

conjunction C- - - - - - - - - - n 11 057

adverb
Df - - - - - - - - - n 12 244
Df - - - - - - - * - i 1 554

relative adverb Dq - - - - - - - - - n 698
interrogative adverb Du - - - - - - - - - n 523
foreign word F- - - - - - - - - - n 459
subjunction G- - - - - - - - - - n 4 932
interjection I- - - - - - - - - - n 449

cardinal numeral
Ma - - - - - - - - - n 480
Ma - * - - - * * - - i 747

ordinal numeral Mo - * - - - * * - - i 365

common noun
Nb - - - - - - - - - n 55
Nb - * - - - * * - - i 27 876

proper noun
Ne - - - - - - - - - n 568
Ne - * - - - * * - - i 5 219

reciprocal pronoun Pc - * - - - * * - - i 4
demonstrative pronoun Pd - * - - - * * - - i 4 795
interrogative pronoun Pi - * - - - * * - - i 900
personal reflexive pron. Pk * * - - - * * - - i 799
personal pronoun Pp * * - - - * * - - i 8 757
relative pronoun Pr - * - - - * * - - i 4 056
possessive pronoun Ps * * - - - * * - - i 2 024
possessive reflexive pron. Pt * * - - - * * - - i 828

indefinite pronoun
Px - - - - - - - - - n 11
Px - * - - - * * - - i 2 822

preposition R- - - - - - - - - - n 11 250

35

Table A.4: Tags for verbs in PROIEL.

PoS meaning PoS
Morpho-syntactic descriptor

Freq.
P N T M V G C D - I

verb

V- - - - - - - - - - n 1
V- - - - d - - * - - i 181
V- - - - u - - * - - i 11
V- - - p n * - - - - i 3 463
V- - - r n a - - - - i 310
V- - * - g - * * - - i 416
V- - * p p a * * - - i 2 298
V- - * f p a * * - - i 310
V- - * f p p * * - - i 1
V- - * r p a * * - - i 13
V- - * r p p * * - - i 3 687
V- * * p i/s * - - - - i 10 858
V- * * p m * - - - - i 1 160
V- * * i i/s * - - - - i 4 395
V- * * f i * - - - - i 1 793
V- * * f m a - - - - i 61
V- * * r i/s a - - - - i 6 165
V- * * r i p - - - - i 1
V- * * l i/s a - - - - i 1 242
V- * * t i a - - - - i 466
V- * * t s a - - - - i 2

36

	Acknowledgements
	1 Introduction
	2 Background
	2.1 Latin vowel lengths
	2.2 Latin resources
	2.2.1 The Morpheus morphological analyser
	2.2.2 Annotated corpora

	2.3 Tagging techniques and programs
	2.3.1 HMM tagging with HunPos
	2.3.2 RFTagger
	2.3.3 MATE tools

	2.4 Previous work
	2.4.1 The Maccer macronizer
	2.4.2 Latin PoS tagging

	3 Methodology
	3.1 System overview
	3.2 Tokenization
	3.3 PoS tagging
	3.4 Lemmatization
	3.5 System evaluation

	4 Results
	4.1 Tagger optimization
	4.1.1 HunPos
	4.1.2 RFTagger

	4.2 Tagger comparison
	4.3 Lemmatization
	4.3.1 Optimization of PurePos
	4.3.2 Lemmatizer comparison

	4.4 System evaluation

	5 Discussion and conclusion
	Bibliography
	A Tag sets

